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Overview
• Some obvious advantages to both ground and space
• How the atmosphere limits ground-based measurements
• Astrometry: ground limitations
• Astrometry in space
• Imaging: SNR for point source detection
• Dilute aperture imaging
• Nulling
• Some space interferometer examples
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Space Advantages
• Atmospheric transmission:

– X-ray
– UV
– NIR bands between 1-10 microns
– Sub-millimeter

• Lack of Turbulence
• Easily reconfigurable u-v 

coverage (spinning the 
spacecraft)

• Easy to reduce background in 
thermal infrared
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Ground Advantages
• Longer baselines (up to a point)
• Larger apertures
• Upgrades, lifetime
• Cost
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Atmospheric Transmission at MKO 0.9 - 6 microns
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These data, produced using the program IRTRANS4, were obtained from the UKIRT worldwide web pages. 

Atmospheric Transmission at MKO 0.9 - 30 microns
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Dispersion
• “Wedges” in atmosphere lead to ~ 20 

micron delays in Mark III 
measurement. 20 um = arcseconds!

• Measured phase is different in red and 
blue light by ~ 250 nm over visible 
spectrum at tan(z)=1.

– Equivalent to 5 milli-arcsec
• Colavita 2-color technique: remove the 

atmospheric wedge contribution based 
on the difference in red and blue 
phases.

• Improvement of ~ 5 compared to 
single-color results.

• Limited by water-vapor turbulence
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Turbulence
• Wavefronts blow across the instrument: hurts astrometry

– Apertures: this is pretty fast, t0 = 10-20 ms for a 10 cm aperture. 
Averages as t0

-1/2

– Baseline: large-scale wedges may be huge.  The spectrum is not 
white. Averages as t-1/6  (This is a big problem for astrometry.)

• Coherence scale: limits Adaptive Optics application
– 1 arcsecond seeing, r0 = 10 cm in the visible
– scales as lambda6/5 (as does t0)
– “outer scale” may be hundreds of m
– Isoplanaticity: region around the target where wavefront r.m.s. 

difference is < 1 radian
• This region is a few arcseconds across
• It limits the useful field for an adaptive optics system.
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Isokinetic Angle
Star 1 Star 2

D or B

h θ

h = mean atmospheric height

D = telescope diameter
B = interferometer baseline

θ = 
h

BThe isokinetic angle defines the average height where the
beams from two different stars no longer overlap.

‘Dome seeing’ does induce relative image motions within a field.
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Narrow Angle (Differential) Astrometry
• Very narrow angle

– Stars separation << isokinetic angle.  
• For 5 m telescope, 10,000 m turbulence, angle is 100 arcsec

– accuracy proportional to star separation and B^(-2/3)
• Not-so-narrow

– Stars separated by >> isokinetic angle
– accuracy independent of baseline, proportional to star separation ^ 1/3

Picture downloaded
from JPL PTI website
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Narrow Angle Astrometric Precision

STEPS Observation at Keck II

STEPS Observation at Palomar 5m

Shao and Colavita, 1992 A&A 262, 353

For a 1-hr long observation in  0.5 arcsec seeing

Colavita, (1994), 12 m baseline
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Ultimate Narrow Angle Limit on the Ground
• The Keck interferometer may be able to achieve 10 micro-

arcsecond relative accuracy between stars.
– Fractional sky coverage is small, few percent due to sparsity of

bright nearby stars
– This requires 5 nm metrology over 100 m baseline, relative to 

starlight path.
– Note:  Sun at 10 parsecs has 1 mas p-p motion due to Jupiter.

• 10 uas sensitivity could detect a 0.01 Jupiter mass companion.

• The best single-aperture astrometry is ~ 200 micro-
arcseconds for sources separated by > few arcsec.
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Wide Angle Astrometry
• Ground based: limited by slow drifts in the non-white 

atmosphere
– averages as t^-1/6
– The Mark III did ~ 5 milli-arcsec on stars with V<7
– NPOI will go fainter but will have similar performance

• Baseline is stable: few microns/night at the Mark III.
– Baseline solution is determined by fitting curves to stars using a 

priori positions.

• In space, the baseline moves
– “Guide” interferometers are used to measure baseline motion
– Various schemes link together patches or rings on the sky.
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The Interferometer Baseline in Space

• Spacecraft drift because they can
– Solar pressure, magnetic fields, gravity gradients

• Star trackers measure the angular drift
– Typically good to better than 1 arcsec
– Control is typically +/- 1 arcsec
– Time scale is 10 – 100 sec.

• Hard to do better than this on an interferometer
– Long thin structures are floppy
– The end-points thermally deflect by micro-radians with 

respect to the star-tracker position
– Joints in deployed structures are weak points.
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Baseline phase referencing
• Inertial motion of baseline must 

be controlled or known to 
0.1*lambda/B radians
– 1 mas for a 10 m baseline in 

the visible

• That’s 10x better than HST
• Requires the development of 

dedicated star trackers, or
• On-board phase-referencing 

interferometers
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So what if the Baseline drifts?
• Resolution is lambda/B = 0.01 arcsec for a 10 m baseline 

at 0.5 microns.
– Drift of 1 arcsec smears 100 fringes! 
– This is comparable to the atmosphere

• But it’s measurable and somewhat predictable
• Delay lines can be moved to compensate the motion

– This is a new can of worms: dynamical changes in the S/C

• To the extent that the drift is not predictable (say 1% of 
100 fringe motion), the spacecraft case is similar to 
ground-based
– t0 = 0.1 sec  
– r0 is large, similar to adaptive optics case

• Thus to have an advantage over the ground, a space 
interferometer MUST have a phase reference.
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SNR per frame in a ground-based 
interferometer

Visibility SNR per frame
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Assumptions:
seeing = 1 arcsec (r0 = 10 cm)
Aperture size = 10 cm (0.7 um)

40 cm (2.4 um)
Throughput = 0.1
Bandwidth = 10%
Visibility = 1.0
Integration time = 10 ms (0.7 um)

40 ms (2.2 um)
0.7 microns: 3 e- read noise/frame
2.2 microns: 25 e- read noise/frame

0.7 um

Shot noise limited

Background noise limited
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How does going to space help?

Visibility SNR per frame
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New Curve Assumptions:
seeing = perfect
Aperture size = 10 cm (0.7 um)

40 cm (2.4 um)
Throughput = 0.1
Bandwidth = 10%
Visibility = 1.0
Integration time = 10 s (0.7 um)

40 s (2.2 um)
0.7 microns: 3 e- read noise/frame
2.2 microns: 25 e- read noise/frame

Take previous chart, integrate
1000 frames (0.01 ms for 10 s)

A single 10 s integration
in space

Going to space improves the
low SNR region by allowing
coherent integration. It does not
improve the high SNR region 
unless aperture size is increased.
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SNR for a complex object
Shot-noise limit

Object complexity = C = number of resolved cells
Surface brightness = N = photons/cell/sec
Collecting area      = A  = effective area/u-v point
Integration time     = T
Signal from object = S = C*N*A*T

Fringe visibility     = V ~ 1/sqrt(C)
This can be thought of in terms of C
vectors having random phases adding 
together in the focal plane.

Signal to Noise ratio per UV point is

SNR = ------------ = V*sqrt(S) = sqrt(NAT)
V*S

sqrt(S)

INTEGRATION TIME
IS INDEPENDENT OF 
OBJECT COMPLEXITY!

Example:   Object 16 mag/arcsec^2
0.01 x 0.01 arcsec (one resolution element)

SNR = 10 per u-v point requires 8000 s per u-v point
(assumes nominal throughput of 29%, static V = 0.6, bandwidth = 500 A,
central wavelength = 550 nm, and two 1 m apertures.)      

V*C*N*A*T

C*N*A*T
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Increasing the Number of Baselines
• More baselines increases collecting area 

– M apertures provides M times more light
– 0.5*M^2 more baselines

• The light available (A) per baseline goes down as 1/M
• The integration time per u-v point increases as M compared to the single-

baseline case.
• Example 1:  

– 16 mag/arcsec^2, 100 resolved points over 0.1 x 0.1 arcsec (10 m baseline)
– Integrated flux is V=21 
– 15 apertures (107 baselines), each 1 m in diameter
– Integration time (SNR=10) is 8000 * 15 =  120000 s (33 hrs) 10 x 10 map

• Example 2:
– 16 mag/arcsec^2, 400 resolved points over 0.2 x 0.2 arcsec
– Integrated flux is V=19.5
– 30 apertures (435 baselines), each 1 m in diameter
– Integration time is 8000 * 30 = 240000 s (67 hrs)  20 x 20 map

• Example 3:
– same source as ex. 2, but two apertures move to 400 positions
– Integration time is 8000 * 400 sec = a really really long time
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Phase Referencing Summary

• SNR for extended, natural objects is not sufficient to support phase 
referencing.
– Short baselines help (bootstrapping from short to long baselines is an old 

idea). 
– But for space to have an advantage over the ground, faint objects are 

observed.
• Bright reference stars are needed, V < 7-8.
• Separate interferometers (as with SIM) observe the reference stars and 

are tied to the rest of the interferometer by laser metrology.
– Note that SIM reference stars are bright for stabilization at 10 nm.  Their 

brightness is NOT driven by high precision astrometry requirements.
• Excellent Dissertation topic:  Design considerations for an imaging 

space-based interferometer.
– Optimum number of apertures, phase referencing, pointing control, 

structural rigidity, expendables….
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Planet Detection by Nulling Interferometry

• The sky background is magnitude -2.1 arcsec-2 in the N 
band (10 microns)
– This really doesn’t limit things unless the optics train is cooled.  

Let’s assume it’s cooled.

• At 10 microns, the diffraction limit of the Keck aperture is 
0.2 arcsec. 
– It thus sees the sky as a background of magnitude 1.4.

• An earth-like planet is ~ 15 magnitudes fainter than its star 
at lambda=10 um.

• It will thus be ~ 15 stellar magnitudes below the thermal 
flux of the sky.
– The problem is that the flux is “everywhere.”
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Planet detection in space
• In space, the prospect of seeing an earth-like planet is very 

challenging, to say the least.
• But a nulling interferometer can effectively suppress the 

central star light because that light is localized.
• It does not suppress the zodiacal light

– But the problem is many orders of magnitude easier than from the
ground.

• Ref: Gene Serabyn’s presentations at the summer school.
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Maximum Baseline Length
• NASA has deployed a 60 m boom with an 800 lb mass. 

(SRTM 3-D Synthetic Aperture Radar)
– 0.1 Hz boom
– 100 m is probably the maximum extension of this technology for 

interferometry

• Separated spacecraft are required for longer baselines

Picture downloaded
from JPL SRTM web
site.
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DLI: a lens-like configuration
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MUSIC: 
Multiple Space-craft Interferometer Constellation
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SONATA
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OVLA
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Clementine II Interferometer
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Conclusions
• A space-borne interferometer need a phase-reference to monitor baseline 

motion
– Without it, integration times will be short. The situation is similar to fringe 

smearing by turbulence on the ground.
• Wide angle astrometry: 

– Space is required to improve on Hipparcos. A few-micro-arcseconds may be 
achievable.

• Narrow angle astrometry
– Potential on the ground to see large terrestrials.
– No chance to detect Earths using interferometric techniques

• Imaging
– Large (> 1 m class), multiple collecting apertures are required to image low-

brightness complex objects.  
• Nulling

– Atmosphere severely limits effectiveness of nulling
– Need to be above the atmosphere for terrestrial planet detection

• Let’s do both!!


